Trf1 is not required for proliferation or functional telomere maintenance in chicken DT40 cells.

نویسندگان

  • Carol Cooley
  • Katie M Baird
  • Virginie Faure
  • Thomas Wenner
  • Jillian L Stewart
  • Sonie Modino
  • Predrag Slijepcevic
  • Christine J Farr
  • Ciaran G Morrison
چکیده

The telomere end-protection complex prevents the ends of linear eukaryotic chromosomes from degradation or inappropriate DNA repair. The homodimeric double-stranded DNA-binding protein, Trf1, is a component of this complex and is essential for mouse embryonic development. To define the requirement for Trf1 in somatic cells, we deleted Trf1 in chicken DT40 cells by gene targeting. Trf1-deficient cells proliferated as rapidly as control cells and showed telomeric localization of Trf2, Rap1, and Pot1. Telomeric G-strand overhang lengths were increased in late-passage Trf1-deficient cells, although telomere lengths were unaffected by Trf1 deficiency, as determined by denaturing Southern and quantitative FISH analysis. Although we observed some clonal variation in terminal telomere fragment lengths, this did not correlate with cellular Trf1 levels. Trf1 was not required for telomere seeding, indicating that de novo telomere formation can proceed without Trf1. The Pin2 isoform and a novel exon 4, 5-deleted isoform localized to telomeres in Trf1-deficient cells. Trf1-deficient cells were sensitive to DNA damage induced by ionizing radiation. Our data demonstrate that chicken DT40 B cells do not require Trf1 for functional telomere structure and suggest that Trf1 may have additional, nontelomeric roles involved in maintaining genome stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limited capacity of the nuclear matrix to bind telomere repeat binding factor TRF1 may restrict the proliferation of mortal human fibroblasts.

The maintenance of telomere integrity is essential for prolonged cell proliferation, and failure in this mechanism is a most consistent manifestation of cellular senescence. In this study, we investigated the role of telomere repeat binding factor (TRF1) in the proliferation of human fibroblasts. TRF1 expression is upregulated in a large variety of immortal human cells and supports de novo telo...

متن کامل

TRF1 phosphorylation on T271 modulates telomerase-dependent telomere length maintenance as well as the formation of ALT-associated PML bodies

TRF1, a component of the shelterin complex, plays a key role in both telomerase-dependent telomere maintenance and alternative lengthening of telomeres, the latter also known as ALT. Characteristics of ALT cells include C-circles and ALT-associated PML bodies, referred to as APBs. The function of TRF1 is tightly regulated by post-translational modification including phosphorylation, however TRF...

متن کامل

Neither HMG-14a nor HMG-17 gene function is required for growth of chicken DT40 cells or maintenance of DNaseI-hypersensitive sites.

HMG-14 and HMG-17 form a family of ubiquitous non-histone chromosomal proteins and have been reported to bind preferentially to regions of active chromatin structure. Our previous studies demonstrated that the chicken HMG-17 gene is dispensable for normal growth of the DT40 chicken lymphoid cell line. Here it is shown that the major chicken HMG-14 gene,HMG-14a, is also dispensable and, moreover...

متن کامل

TRF1 is a critical trans-acting factor required for de novo telomere formation in human cells.

The duplex telomere repeat (TTAGGG)(n) is an essential cis-acting element of the mammalian telomere, and an exogenous telomere repeat can induce chromosome breakage and de novo telomere formation at the site of a break (telomere seeding). Telomere seeding requires the telomere repeat (TTAGGG)(n) more stringently than does an in vitro telomerase assay, suggesting that it reflects the activity of...

متن کامل

Efficient modification of a human chromosome by telomere-directed truncation in high homologous recombination-proficient chicken DT40 cells.

Truncation of human chromosomes at desired sites by homologous recombination techniques enables functional and structural analyses of human chromosomes and development of human artificial chromosomes. However, this targeted truncation has been inefficient. We describe here an efficient method for targeted truncation in the chicken DT40 cells with a high homologous recombination rate. The human ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 20 10  شماره 

صفحات  -

تاریخ انتشار 2009